Noise Mitigation

Tutorial: Quantum Noise Characterization and Mitigation

Daniel Volya & Prabhat Mishra

Computer & Information Science & Engineering University of Florida

September 19, 2022

▲ ■ ト ■ つへの University of Florida

・ ロ ト ・ 何 ト ・ ヨ ト ・ 日 ト

Noise Mitigation

https://volya.xyz/blog/qce2022

● ■ つへのUniversity of Florida

◆ロト ◆御 と ◆注 と ◆注 とう

Noise Mitigation

Quantum Computing

(a) IBM Q System

(b) NIST Ion trap 2011

イロト イロト イヨト イヨト

D. Volya & P. Mishra

▲ ■ ▶ ■ のへのUniversity of Florida

(日)

-

University of Florida

Why?

- 1. Quantum computers of today are "noisy" and computationally weak.
- 2. But we want answers today (e.g. groundstate energies!)
- 3. What can we do?

D. Volya & P. Mishra

- Beginner: 20%
- Intermediate: 60%
- Advanced: 20%

◆ロト ◆御 と ◆注 と ◆注 とう

< ≣ ► ≣ ৩৭০ University of Florida

Noise Mitigation

Table of contents

Introduction

Noise Characterization

Noise Mitigation

・ロト・日本・日本・日本・日本・日本

University of Florida

Introduction - Classical vs. Quantum

● ■ ● ● へUniversity of Florida

(日)

Introduction - Example

Hadamard Gate, H

$$H|0
angle = rac{1}{\sqrt{2}}\left(|0
angle + |1
angle
ight) = |+
angle$$

$$\frac{1}{\sqrt{2}} \begin{bmatrix} 1\\1 \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1\\1 & -1 \end{pmatrix} \begin{bmatrix} 1\\0 \end{bmatrix}$$

D. Volya & P. Mishra

■ ● ■ • ○ へ
 University of Florida

◆ロト ◆御 ト ◆臣 ト ◆臣 ト ○

Introduction - Example (Density matrix)

Hadamard Gate, H

 $H\left|0
ight
angle\left\langle 0\right|H^{\dagger}=\left|+
ight
angle\left\langle +\right|$

$$\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = \frac{1}{2} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$

D. Volya & P. Mishra

University of Florida

= 900

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Introduction - Behind the Scenes

Discrete quantum operations (gates) are *implemented* as time evolutions of a quantum system.

$$i\frac{\partial}{\partial t}|\psi\rangle = \hat{H}(t)|\psi\rangle, \quad i\frac{\partial}{\partial t}\rho = [\hat{H}(t),\rho]$$

$$|\psi(\mathbf{t}_f)
angle = U(\mathbf{t}_f, \mathbf{t}_i) |\psi(\mathbf{t}_i)
angle$$
 $U(\mathbf{t}_f, \mathbf{t}_i) = \mathcal{T} \exp\left(-i \int\limits_{t_i}^{t_f} \hat{H}(\mathbf{t}) d\mathbf{t}\right)$

< ≣ ► ≣ ৩৭০ University of Florida

<ロト < 同ト < 回ト < 回ト -

Introduction - Behind the Scenes

$$H(t) = H_0 + \sum_j \mathsf{a}_j(t) H_j$$

E.g. The Cooper Pair Box (CPB) Hamiltonian:

 $H_T = H_{el} + H_j$

$$\begin{split} H_{el} &= 4E_{C}(\hat{n} - n_{g})^{2} \approx 4E_{C}(n - n_{g})^{2} |n\rangle \langle n| \\ H_{j} &= -\frac{E_{j}}{2}\cos\hat{\phi} \approx -\frac{E_{j}}{2}\sum_{n}|n\rangle \langle n + 1| + |n + 1\rangle \langle n| \\ UH_{g}U^{\dagger} &= \epsilon Re(B)(\tilde{c} + \tilde{c}^{\dagger}) - i\epsilon Im(B)(\tilde{c} - \tilde{c}^{\dagger}) \end{split}$$

University of Florida

Introduction - Zooming In

D. Volya & P. Mishra

University of Florida

Introduction - Universal Computation

- Solovay–Kitaev theorem
- Quantum circuit of *m* constant-qubit gates can be approximated to *\epsilon* error by a quantum circuit of *O*(*m* log^c(*m*/\epsilon)) gates from a universal gate set
- "Fast" to do so (logarithmic)

Example universal gate set:

 $\{H, CNOT, T\}$

くロト (得) (ア・ マラト -

Introduction - Summary

- Classical computers are restricted to one particular state at a time. Quantum computers can be in superposition
- Quantum circuits represent a sequence of discrete (entangling) gates
- Quantum gates are implemented as evolutions of some underlying quantum system
- Can reach¹ any arbitrary quantum state with a crafted sequence of gates

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

¹ ϵ -close given a *universal* gate set

Introduction - The Catch

Quantum computers must satisfy conflicting requirements:

- Externally control, entangle, and measure qubits
- Isolate the qubits from their environment

Iniversity of Florida

くロ とう (雪 と く ヨ と)

Noise Mitigation

Introduction - Coherent Noise

University of Florida

э

イロト イロト イヨト イヨト

Noise Mitigation

Introduction - Deoherent Noise

- Quantum Channels
- Church of the larger Hilbert space?

D. Volya & P. Mishra

< ≣ ► ≣ ৩৭০ University of Florida

◆□ ▶ ◆檀 ▶ ◆臣 ▶ ◆臣 ▶ ○

Introduction - Quantum threshold theorem

Quantum computer with a physical error rate below a certain threshold can, through application of quantum error correction schemes, suppress the logical error rate to arbitrarily low levels.

Code	# Qubits	Error Threshold
Bit-flip/Phase-flip	3	p < 0.5
Shor	9	${m p} \lessapprox 0.0323$
Steane	7	${m p} \lessapprox 0.0579$

Table: Some "static" error correction codes

Estimates: 0.1% probability of depolarizing error, surface code would need 1000-10000 physical qubits per one logical qubit (E. Campbell et al. arXiv:1612.07330)

(日)

University of Florida

Introduction - Consequence of Noise

- 1. The depth of a circuit is constrained
- 2. Noisy Intermediate Scale Quantum (NISQ) computers (John Preskill)

Low Level

pulse optimization, quantum features

Middle Level

noise-resilient algorithms, noise-cancellation

> High Level compilers

D. Volya & P. Mishra

University of Florida

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Noise Mitigation

https://volya.xyz/blog/qce2022

ৰ≣ ► ≣ ৩৭০ University of Florida

◆ロト ◆御 と ◆注 と ◆注 とう

Noise Mitigation

Quantum State (Process) Tomography

$$|0\rangle - H |0\rangle$$

Figure: Hadamard gate

What is state $|\psi\rangle$? (What is the matrix *H*?)

D. Volya & P. Mishra

◆ ■ ト ■ つへの University of Florida

Quantum State (Process) Tomography

Each measurement has 2 possible outcomes, hence 6 different possibilities. Need to fit these 6 possibilities into a 2-by-2 matrix ρ .

D. Volya & P. Mishra

University of Florida

Noise Mitigation

Quantum State (Process) Tomography

Figure: 2-Qubit Process Tomography

▶ ◀ ≧ ▶ ≧ ∽ へ ↔ University of Florida

Other Methods

Summary of Noise Characterization Techniques					
Technique	Purpose	Advantage	Disadvantage		
1. Quantum State (Process) Tomography • Pseudoinverse MLE BME Matrix Completion Permutation Invariant Tomography	ρ(ε(ρ)) ρ ρ ρ ρ ρ	Full Classification Simple Least-Squares No Matrix Inversion Honest Solution $O(r2^n \log^2 2^n)$ $O(n^2)$	$O(2^{n2})$ Matrix inversion Prediction not justifiable Optimization routine ρ must be close to pure Not complete ρ		
2. Measurement Error CharacterizationTensor Product ModelCTMP	$A = (A_i \otimes A_{i-1} \dots) A = e^G$	Full Classification O(2) O(e ^{5 γ} poly(n))	O(2 ⁿ) No cross-talk Assumes small noise		
 Randomized Benchmarking 2 (t)-design 	lpha lpha	Avg. Error Rate $O(m \log(1/\epsilon))$	$O(n^{22}(\ln n^2)^3)$ Only clifford gates		
 4. Comparing Output Distribution Kullback-Leibler Jenses-Shannon Average Cross Entropy 	D _{KL} D _{JS} α _f	Fewer Measurements Symmetric SPAM Resilient	Classical simulation Asymmetric Considers average		
5. Quantum Volume	QV	Performance Metric	Considers average		

∃ 990

◆□▶ ◆舂▶ ◆注▶ ◆注▶

Figure: In-phase and quadrature components (IQ) for state |10001) (ibmq_rome)

D. Volya & P. Mishra

▲ ■ ► ■ つへの University of Florida

イロト イロト イヨト イヨト

Noise Mitigation

Noise Mitigation

NISQ computers are... weak. Can we help them with classical computers?

<ロト イ 昂 ト イ ヨ ト ヨ の Q () University of Florida

Noise Mitigation

Summary of Noise Mitigation and Correction Techniques					
Technique	Purpose	Advantage	Disadvantage		
1. Quantum Error Correction 2. Classical-Postprocessing • RNE • CDR • vnCDR • PEC 3. Passive Noise Mitigation • Optimal Control • Open Quantum Systems • Decoherence-free subsystems • Holonomic QC	$ \begin{split} \psi\rangle &= \sum_{i} \alpha_{i} \phi_{i}\rangle \\ \langle A\rangle \\ \langle A\rangle &= f(0; \vec{a}) \\ \langle A\rangle &= f(\langle A\rangle^{\text{noisy}}, \vec{a}) \\ \langle A\rangle &= f(0; \langle A\rangle^{\text{noisy}}, \vec{a}) \\ \langle A\rangle &= \gamma \mathbb{E} \{\dots\} \\ \psi\rangle \langle \rho\rangle \\ a_{i,n} \\ H \\ H_{S} \\ \Gamma(t), a_{i,n} \end{split} $	Reliable Qubits Minimizes quantum resources No noise-model Self-tuning Enhanced self-tuning Unbiased estimate Inherent robustness Direct control Powerful model Inherent noise mitigation Control robustness	Costly; Noise-model Needs regression models f-bias Clifford gate approx. Clifford gate approx. Gate tomography System Model Runtime Simulation Limited to system Limited to system		

◆ロト ◆御 と ◆注 と ◆注 とう

NISQ Algorithms ("Quantum machine learning")

Example: Variational Quantum Circuits

D. Volya & P. Mishra

University of Florida

-

Zero-noise Extrapolation

Idea:

- 1. Let τ quantify the noise-level in a circuit.
- 2. Intentionally increase circuit depth, $\tau' = \lambda \tau$
- **3.** Fit a function $f(\lambda; a_0, a_1, \ldots)$
- 4. Extrapolate at "zero noise" $\lambda = 0$

(A. Kandala et al. arXiv:1805.04492) (Y. Li et al. arXiv:1611.09301)

Zero-noise Extrapolation

Figure: Global folding strategy of gates.

Figure: Local folding strategy of gates.

Figure: Pulse stretching of gates (K. Temme et al. arXiv:1612.02058).

▲ ■ ▶ ■ • • ○ へUniversity of Florida

Zero-noise Extrapolation

Pros:

Do not need detailed knowledge of a noise model

Cons:

- May suffer from large bias a weak-formulated function f, such as a low-degree polynomial, may not achieve the zero-noise limit.
- For circuit with short depth, the lowest error points may be dominated by noise and perform worse than the unmitigated result.

くロ とう (雪 と く ヨ と)

Clifford data regression

Idea:

- Use Clifford circuits to classically simulate
- Compare simulation with quantum computer results
- Fit a regression model to recover noiseless result

(P. Czarnik et al. arXiv:2005.10189)

Iniversity of Florida

Clifford data regression - Gottesman–Knill theorem

- U stabilizes $|\psi\rangle$ if $U|\psi\rangle = |\psi\rangle$
- Clifford group: {V s.t. $VP_iV^{\dagger} = P_j$ }
- A circuit consisting of only Clifford gates can be simulated efficiently

Clifford data regression

- 1. Generate data set: $\{\langle A \rangle_i^{\text{noisy}}, \langle A \rangle_i^{\text{exact}}\}$
- 2. Fit $\langle A \rangle^{\text{exact}} = f(\langle A \rangle^{\text{noisy}}, \vec{a})$
- 3. Correct $\langle A \rangle^{\text{noisy}}$ with fitted function parameters.

D. Volya & P. Mishra

University of Florida

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● のQ@

Clifford Data Regression

Pros:

- Do not need detailed knowledge of a noise model
- The error mitigation self-tunes with respect to a given quantum computer

Cons:

- Test circuits are mostly Clifford approximations, which may not completely span the available Hilbert space
- Need a balance between the number of Clifford gates, non-Clifford gates, and classical computational complexity

ヘロト 人間 ト ヘヨト ヘヨト

Probabilistic Error Cancellation

Idea:

1.
$$\mathcal{G}_{i} = \sum_{\alpha} \nu_{i,\alpha} \mathcal{G}'_{i,\alpha}, \quad \nu_{i,\alpha} \in \mathbb{R}$$

2. Quasi-probability: $\sum_{\alpha} \nu_{i,\alpha} = 1, \quad \gamma_{i} = \sum_{\alpha} |\nu_{i,\alpha}| \ge 1.$
3. $\mathcal{U} = \sum_{\vec{\alpha}} \nu_{\vec{\alpha}} \mathcal{U}'_{\vec{\alpha}}$
4. $\langle \mathsf{A} \rangle_{\mathsf{ideal}} = \operatorname{tr}[\mathsf{A}\mathcal{U}] = \sum_{\vec{\alpha}} \nu_{\vec{\alpha}} \operatorname{tr}[\mathsf{A}\mathcal{U}'_{\vec{\alpha}}] = \sum_{\vec{\alpha}} \nu_{\vec{\alpha}} \langle \mathsf{A}_{\vec{\alpha}} \rangle_{\mathsf{noisy}}$

(A. Mari et al. arXiv:2108.02237) (J. Sun et al. arXiv:2001.04891) (S. Zhang. arXiv:1905.10135)

・ ヨークへ
 University of Florida

Probabilistic Error Cancellation

Pros:

 Provides an unbiased estimation of expectation values by utilizing gate tomography

Cons:

- Sampling $\langle A_{\vec{\alpha}} \rangle_{\text{noisy}}$ can be costly
- Complete tomographic knowledge of gates in large-scale qubit systems is infeasible

Noise Mitigation

https://volya.xyz/blog/qce2022

University of Florida

◆ロト ◆御 と ◆注 と ◆注 とう