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Abstract—Spectral graph partitioning is a well known tech-
nique to estimate clusters in undirected graphs. Recent ap-
proaches explored efficient spectral algorithms for directed and
mixed graphs utilizing various matrix representations. Despite
its success in clustering tasks, classical spectral algorithms suf-
fer from a cubic growth in runtime. In this paper, we propose a
quantum spectral clustering algorithm for discovering clusters
and properties of mixed graphs. Our experimental results
based on numerical simulations demonstrate that our quantum
spectral clustering outperforms classical spectral clustering
techniques. Specifically, our approach leads to a linear growth
in complexity, while state-of-the-art classical counterpart leads
to cubic growth. In a case study, we apply our proposed
algorithm to preform unsupervised machine learning using
both real and simulated quantum computers. This work opens
an avenue for efficient implementation of machine learning
algorithms on directed as well as mixed graphs by making use
of the inherent potential quantum speedup.

Index Terms—Quantum computing, spectral graph cluster-
ing, eigenvalue computation, eigenvector projection

I. INTRODUCTION

Quantum computing is powerful because of the inherent
handling of an exponential state space along with quantum
mechanical effects such as entanglement and superposition.
Despite such promise, there are only a few quantum al-
gorithms known to give impressive speedup over classi-
cal computers. While this is presently true, a remarkable
number of applications stem from these few primitives.
One popular class of quantum speedup is derived from
quantum simulation. These quantum algorithms provide an
exponential speedup over the best known classical algo-
rithms for simulating quantum dynamics. Other examples of
these primitives include the influential Shor’s algorithm and
Grover’s search as well as quantum walks [1] and quantum
linear systems algorithms. While these primitives may be
viewed as independent, all of them rely on ideas based in
signal processing and spectral transformation.

These few primitives, and the core concept of spectral
transformation, have opened many research areas in quan-
tum algorithms. For example, eigenvalue computation, sin-
gular value decomposition, and matrix inversion are central
to numerous algorithms in optimization and machine learn-
ing. Several works extend the primitives to develop quantum
algorithms that provide speedup of matrix computations.
This paper focuses on adapting these quantum algorithms
to enhance spectral analysis for clustering directed graphs.

Spectral clustering utilizes eigenvalues and eigenvectors
from a matrix representation of a graph to discover impor-
tant substructures, and then solely focus on these substruc-

Fig. 1: An overview of a spectral clustering algorithm to
discover clusters in a directed graph. Quantum algorithms
are used to enhance (1) spectral analysis and (2) clustering.

tures to obtain clusters. A distinct advantage of spectral
clustering is the familiar vector-space mathematical prop-
erties which places guarantees on the solution. In general,
graph clustering problems are NP-hard, hence heuristic and
machine learning algorithms serve important roles in solving
real-world applications. However, it is often unclear whether
these algorithms will provide a reasonable solution based on
the given graph structure. Although spectral clustering is still
a heuristic approach, the results and implications are fully
understood by linear algebra.

Analyzing the structure of graphs brings insight to many
real world phenomena. In particular, graph clustering and
partitioning is a commonly used method to address problems
in different scientific disciplines including VLSI layout,
parallel job scheduling, social network analysis, and image
segmentation. Although the potential applications are vast,
in this paper we apply the constructed quantum spectral clus-
tering algorithm to small unsupervised problems in machine
learning, such as on XOR problem and on a non-convex
dataset. This paper makes the following major contributions.

• To the best of our knowledge, our proposed approach
is the first attempt at efficient clustering of directed as
well as mixed graphs using quantum algorithms.

• We develop core concepts to project eigenvalues and
eigenvectors of a graph onto important subspaces
purely on a quantum computer.

• We demonstrate the quantum speedup in spectral clus-
tering of directed graphs derived from both real and
synthetic datasets.

This paper is organized as follows. Section II provides rel-
evant background on quantum computing and survey related
approaches. Section III outlines our problem formulation.
Section IV describes our proposed framework for quantum
spectral analysis of mixed graphs. Section V presents the
experimental results to demonstrate the effectiveness of our978-1-6654-3274-0/21/$31.00 ©2021 IEEE



proposed approach. Finally, Section VI concludes the paper.

II. BACKGROUND AND RELATED WORK

This section provides a brief introduction to quantum
computing followed by an overview of related efforts on
graph clustering techniques.

A. Quantum Computing

We briefly describe an overview of quantum computing.
The state |φ〉 of a qubit lives in a 2-dimensional complex
Hilbert space and can be described using the computational
basis: |φ〉 = α |0〉+β |1〉 where |α|2 + |β|2 = 1. Measuring
a qubit will give 0 with a probability of |α|2 and 1 with
a probability of |β|2. A quantum register |ψ〉 consists of
one or more qubits, with the dimension of the state space
growing in order of 2n where n is the number of qubits. A
quantum gate, and in general, a quantum circuit U acts on
a quantum register to transform it to another state: U |ψ〉.
Fundamentally, a quantum algorithm will take quantum
registers from an initial state |ψ〉 = |0〉⊗n and transform
them to a useful state |ψ′〉 which encodes a solution to
a given problem. The primary challenge is to develop the
unitary operators U which define the desired transformation.

B. Graph Clustering

In general, clustering refers to the process of dividing a set
into subsets, where elements in each subset are considered
to be related. For example, in the area of machine learning
and data mining, the task of clustering is generally referred
to as “unsupervised learning” where the aim is to feasibly
group together similar objects without any prior knowledge
about their grouping [2]. Due to the NP-Hard nature of
optimal clustering, there has been extensive research ef-
forts to devise clustering mechanism for various problem
formulations. Specific to clustering on graphs, mechanisms
include approximating minimum cuts, preforming spectral
analysis, and finding quasi-cliques [3]. Spectral analysis is
a unique method which is solely based on utilizing the
eigen-spectrum of a given matrix representation of graph.
A number of theoretical work has connected the eigen-
spectrum to properties of graphs, such as random walk [4]–
[6] and clustering [7], [8]. Recent efforts have explored
utilization of quantum computing to reduce time complexity
of these approaches with some specific application to graph
problems [9], [10]. Most of these efforts focus on undirected
graphs. While directed graphs are used in many real-world
applications, there is limited effort in applying clustering on
directed graphs. As discussed in Section III, there are several
fundamental challenges in developing a quantum spectral
analysis algorithm targeted at directed graphs.

III. PROBLEM FORMULATION

Along with an unfavorable run-time, clustering of di-
rected graphs is a more challenging task than clustering of
undirected graphs. While there has been significant research
effort in clustering undirected graphs, those solutions cannot

be directly applied to directed graphs. The purpose of
this section is to formally outline the problems seen in
directed graphs as well as to define terminology used in
later sections.
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Fig. 2: An example mixed graph with six nodes and 4
directed edges and 3 undirected edges.

A. Directed Graphs

A directed graph is an ordered pair G = (V,E) where
V = {v1, v2, . . . , vn} is the set of the graph’s vertices, and
E ⊆ V 2 is the set of its edges. Assigning a real number
to each of the edges yields a weighted graph. In case of an
undirected graph, any edge will also have a symmetric edge
in the opposite direction.

B. Graph Representation using Adjacency Matrix

The adjacency matrix A of a graph G = (V,E) is a
|V | × |V | matrix such that:

A =

{
wij if (i, j) ∈ E,∀i, j ∈ 1, . . . , |V |
0 otherwise

(1)

The definition above is generic for both directed and
undirected graphs. However, one crucial property is that
the matrix is symmetric, i.e., A = AT for an undirected
graph. This property has led to powerful theoretical insight
to undirected graphs. Namely, a symmetric matrix A can be
diagonalized as A = UΛUT where the orthogonal matrix
U contains as columns the eigenvectors of A, and Λ =
diag(λ1, . . . , λn) is a diagonal matrix with corresponding
eigenvalues as its entries. The eigenvalues of an adjacency
matrix defines the spectrum of a graph, and contains close
connections with several important graph properties [6].

C. Representation of Mixed Graphs

Symmetric matrices have nice properties that lead to
insights in undirected graphs. However, for directed or
mixed graphs (e.g. figure. 2), the adjacency matrix is no
longer symmetric. In this case, the eigenvalues may be
complex-valued. A complex-valued spectrum no longer has
the straight-forward connections with several graph proper-
ties. This problem limits the usage of non-symmetric matrix
representation for directed or mixed graphs, specifically in
the case of clustering. To overcome these shortcomings,
we propose to transform a non-symmetric matrix into a
symmetric matrix, and encode additional properties to main-
tain resemblance of a directed graph. After obtaining a



symmetric matrix, the familiar methods of spectral analysis
can be used.

D. Mixed Laplacian

The Laplacian provides a natural link between discrete
representation of graphs, and continuous representation of
vector spaces. Similar to adjacency matrices, the usual
extension of a mixed graph Laplacian to undirected graphs
leads to non-symmetric matrices. In a connected graph,
where a directed path exists for each node pair, Chung
[6] proposed a symmetric version of the Laplacian. In
general, graphs are not fully connected. Hence, one strategy
is to utilize the PageRank method [11] and assign small
probabilities of transition for any given node pairs. This
yields a fully connected graph, and the previous theoretical
work for directed and mixed Laplacians applies [12].

E. Spectral Clustering

Spectral clustering reduces the space by removing irrele-
vant contributors. This is practically done by projecting data
to the most significant eigenspaces that, in this case, are
associated with the smallest eigenvalues. After this transfor-
mation, clustering, such as via K-means, can be preformed
in the lower dimension. For a n-node graph, the classical
algorithm to preform spectral clustering is decomposed as
follows: creating the Laplacian matrix in O(nm) where m is
the number of graph edges, then eigenvalue and eigenvector
extraction in O(n3), and finally a k-means clustering in
O(nk2). The O(n3) dominant term can make spectral
clustering impractical for large applications. In practice,
approximation techniques based on random sampling or
kernel prepossessing have been proposed. An important
insight is that the spectral clustering algorithm returns two
clusters where a random walker is likely to be trapped,
with minimal chance of transitioning from one cluster to
the other. As a result, the algorithm tends to preform well
when the graph consists of high-density clusters.

F. Unsupervised Classification to Spectral Clustering

One of the primary objectives of machine learning is
to find a labeling, or classification, for a given data set
X1, . . . , Xn, in an unsupervised manner. In the following
we define a mapping between classification and clustering.

Let a similarity graph be a graph where data points Xi

and Xj have an edge between them if they are considered
similar. There are several ways to define similarity, but we
use a generic approach by considering each pair of datasets
and calculate the distance using the Gaussian similarity
function

s(Xi, Xj) =
−||Xi −Xj ||2

2σ2
(2)

where σ is a parameter tuned for the particular dataset.
Given some threshold ε, two data points, Xi and Xj ,
are considered similar if and only if s(Xi, Xj) > ε. An
adjacency matrix is then defined as:

Aij =

{
1 s(Xi, Xj) > ε

0 otherwise
(3)

The degree matrix is defined as:

Dii =

n∑
j

Aij (4)

Finally, the normalized Laplacian matrix can be viewed as:

L = I −D−1/2AD−1/2 (5)

Note, by construction, the normalized Laplacian matrix
is symmetric. Also, the eigenvectors of L are related to a
particular classification of the original dataset.

IV. QUANTUM SPECTRAL GRAPH CLUSTERING

Algorithm 1 shows an overview of our proposed spectral
clustering algorithm that consists of both classical and
quantum computation. Line 2 constructs a mixed Laplacian
using PageRank. Line 3 derives a unitary matrix by a
matrix exponential. Line 4 constructs a matrix B, which
will preform amplitude encoding to efficiently encode data
to a quantum state, resulting in |b〉. For a vector x ∈ Rd, the
encoded quantum state is given by |x〉 = 1

||x||
∑d−1
i=0 xi |i〉.

This means the i-th component from the vector x becomes
the amplitude for |i〉. To maintain normalization, the state is
divided by the norm of x. Line 5-15 preform the quantum
component of the spectral graph clustering.

Algorithm 1: Quantum Spectral Graph Clustering
Input: G(V,E), k
Output: k-clusters

1 Classical:
2 Build mixed Laplacian matrix L
3 Obtain U = eiL

4 Construct B for amplitude encoding |b〉, a
superposition of all eigenvectors from L

5 Quantum:
6 Compute eigenvalues by preforming QPE on |b〉
7 Use an ancilla qubit1 to separate eigenstates ≤ µ
8 if Measured 0 from ancilla qubit1 then
9 Preform conditional rotation with new

ancilla qubit2
10 if Measured 0 from ancilla qubit2 then
11 Preform Quantum K-means Clustering

12 else
13 Repeat Quantum

14 else
15 Repeat Quantum

Figure 3 shows the two major steps of the quantum com-
ponent in circuit representation. First, the classically-derived
gate B (constructed in line 4 of Algorithm 1) is applied to
create the input state in a superposition of eigenvectors of L.
Next, quantum phase estimation (QPE) is preformed, where
U is defined as successive control operations of exp{iL}2

k

where k denotes which control qubit to utilize spanning from
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Fig. 3: Overview of the quantum algorithm in circuit representation. First, a classically-derived gate B is applied to create
the input state in a superposition of eigenvectors of L. Next, QPE is preformed, where U is defined as successive control
operations of exp{iL}2

k

where k denotes which control qubit to utilize spanning from 0 to a−1. Finally, thresholding and
conditional rotation are applied to project the eigenvectors to a subspace with the smallest eigenvalues, hence producing a
quantum state which represents a Laplacian L that has been projected to the subspace. a depends on the desired precision
for eigenvalue estimates which follows from the analysis of QPE, and n is log2 of the number of nodes in the graph.

0 to a − 1. Finally, thresholding and conditional rotation
are applied to project the eigenvectors to a subspace with
the smallest eigenvalues, hence producing a quantum state
which represents a Laplacian L that has been projected to
the subspace. The remainder of this section describes the
two majors steps in Figure 3.

A. Computing Eigenvalues

Due to the mixed Laplacian matrix L being real and
symmetric, it is therefore also a Hermitian matrix. Hence, a
unitary matrix is derived by a matrix exponential:

U = eiL (6)

An important relationship between U and L is that they
share the same eigenvectors |λi〉, and the original eigen-
values λi of L are encoded into the phase. Although we
assume that U is given as part of the problem formulation,
in practice computing the matrix exponential efficiently may
not be possible. In the context of this problem, the general
methods for computing the matrix exponential are coined as
quantum Hamiltonian simulation. Various proposed methods
target solving the matrix exponential using quantum algo-
rithms (see for example [13]), however this topic remains
largely as an open problem. Additionally, when taking the
exponential of the matrix L, we have projected eigenvalues
into a complex phase between 0 and 2π. This can cause
some eigenvalues to be wrapped around 0 and 2π, hence
removing the original ordering of eigenvalues, which will
lead to incorrect thresholding of eigenvalues. A work-around
is to rescale the original matrix, which will leave the overall
properties unchanged, and will ensure the eigenvalues will
cleanly map between 0 and 2π.

With a unitary that contains the important spectral prop-
erties of L, the Quantum Phase Estimation (QPE) algorithm
[14] is used to create a superposition of eigenvectors with
their amplitudes encoding the corresponding eigenvalues.

Given a unitary matrix U with an eigen-pair relation
U |ψ〉 = e2πiθ |ψ〉, QPE estimates the phase θ. The first step
of QPE takes as input a superposition of eigenvectors with
arbitrary normalized amplitudes and preforms following:

2n−1∑
j=0

αj |λj〉 7→
1

2
n
2

2n−1∑
k=0

2n−1∑
j=0

αje
2πikλj |λj〉 (7)

Of course, the eigenvectors are not known beforehand, hence
there is no guarantee that input state will be a superposition
of eigenvectors from L. A straightforward method is to con-
duct another experiment by generating random states, and
investigating the output distribution of predicted eigenvalues
using QPE.

The second step applies the inverse quantum Fourier
transform to map the phase into the corresponding basis
components, resulting in a state:

1

2n

2n−1∑
l=0

2n−1∑
j=0

αj

2n−1∑
k=0

e
2πik
2n (2nλk−l) |l〉 |λj〉 (8)

For clarity, we rewrite the expression as:

2n−1∑
j=0

αj |Λj〉 |λj〉+ other (9)

B. Eigenvector Projection

The next key step is to project onto the k lowest eigen-
vectors. To do this we first separate eigenvalues lower than
a threshold µ using an extra ancilla qubit. Hence the lowest
eigenvalues are flagged with |0〉:∑

j
Λi≤µ

αj |Λj〉 |λj〉 |0〉+
∑
j

Λi>µ

αj |Λj〉 |λj〉 |1〉 (10)

Here we use an ancilla to effectively create a non-
unitary operation on the state. This projection can also be



implemented deterministically in a few ways as discussed in
literature [15], [16]. Using these methods, a quantum circuit
can be designed for comparison by modifying a ripple-
carry adder circuit. This of course requires additional ancilla
qubits to maintain reversibility of the quantum circuit.

If the flag qubit is |0〉, a conditional rotation is preformed.
For a quantum state |ψ〉, conditional rotation makes use
of an ancillary qubit to preform |ψ〉 |0〉 7→ |ψ〉 (ψ |0〉 +√

1− ψ |1〉). Hence, this requires another ancilla qubit to
produce:∑

j
Λi≤µ

αj |Λj〉 |λj〉 |0〉
(

Λj |0〉+
√

1− Λj |1〉
)

+
∑
j

Λi>µ

αj |Λj〉 |λj〉 |1〉 (11)

If a result of 1 is measured for either of the ancilla qubits,
the result is discarded and recomputed. Otherwise, the
probability of measuring |00〉 is proportional to

p(00) ∝
∑
j

Λi≤µ

α2
jΛ

.
j (12)

The resulting states contain eigenvectors that are bounded
by µ ≥ k. We therefore have found the important contribu-
tors and disregarded weak contributors in the spectrum of L.
Hence, clustering can now be preformed on the remaining
superposition of eigenvectors. This can be preformed in
two ways: (i) classically by first measuring and obtaining
probabilistic predictions of important eigenvectors, or (ii)
the computation can be carried on post-ancilla-measurement
and the clusters can be estimated using quantum K-means
clustering [17] on the projected state.

V. EXPERIMENTS

To demonstrate the effectiveness of our proposed quan-
tum spectral graph clustering, we have used both real and
synthetic benchmarks. While our approach is universally
applicable (clustering any mixed graphs), for the real case,
we focus on two fundamental machine learning problems
that are small enough to be run on present-day quantum
computers. The synthetic test is used to show the speed-up
provided by the quantum algorithm.

A. Experimental Setup
We consider the following three types of datasets:

exclusive-or, non-convex clusters and random graphs.

1) Exclusive OR: A classic problem typically tar-
geted at multilayered neural networks is the exclu-
sive OR (XOR). There are four points in the dataset:
(0, 1, 1), (1, 0, 1), (1, 1,−1), (0, 0,−1). Using a notion of
similarity from Equation 2, we construct the symmetric
Laplacian matrix as follows:

L =


1 −1 0 0
−1 1 0 0
0 0 1 −1
0 0 −1 1

 (13)

(a) Eigenvalue spectrum
(b) Eigenvectors of the two
smallest eigenvalues

Fig. 4: The eigenvalues and eigenvectors for XOR Laplacian
L in Equation 13.

The expected eigenvalues and the significant eigenvectors
are shown in Figure 4.

2) Non-convex Clusters (NCC): Spectral clustering has been
shown to be effective for non-convex clusters (NCC), when
compared to naive unsupervised techniques. Consider two
concentric circles as shown in Figure 5. A similarity graph
is constructed which encodes the relationship between the
inner and outer points of the circles.

Fig. 5: Eight points used to generate concentric circles

3) Random Graphs: In order to investigate the running time
of both the classical approach and the proposed quantum
algorithm, we also created random directed graphs and
observe the total number of operations. In this case, the
quantum algorithm is numerically simulated on a classical
computer. Although it would be interesting to preform the
same experiments using a real quantum computer, such com-
puters are not yet available. Simulation with large number of
qubits is impractical, hence the random graphs are restricted
in size to ensure simulation is feasible. Additionally, in order
to mimic real quantum computers, a quantum compiler [18]
is used to transform the quantum circuit to an equivalent
circuit that is composed of gates taken from a universal
gate set.

B. Results
We use the 5-qubit quantum computer, ibmq athens

[19], for XOR, and the 16-qubit quantum computer,



ibmq 16 melbourne [20], for NCC provided by IBM Q.
For the XOR problem, two qubits are used to represent
eigenstates of the 4× 4 Laplacian matrix, and another two
qubits for QPE precision. The remaining qubit is used as an
ancilla qubit for conditional rotation. To fit this problem on
a 5-qubit computer, the initial state is prepared such that the
thresholding step can be ignored. For NCC, three qubits are
used for encoding the eigenstates, and four qubits for QPE
precision. The circuits were then transpiled with maximum
optimization for the respective devices.

A classical simulation results reveal 100% accuracy when
observing the quantum state before measurement. This is
expected as QPE will not preform any approximation to
the eigenvalues since these problems are built with a simple
Laplacian matrix. However, the accuracy on real devices are
37% and 13% for the XOR and NCC problems, respectively.
The quantum devices have a respective quantum volume of
32 and 16 [21], which indicates the realistic size in qubit
count and circuit depth that a quantum circuit can have
before noise overpowers the results [22]. In both cases,
the circuit depth exceeds the capabilities of the devices.
This study shows promise of solving encoded graph-based
problems by a quantum computer. Future work needs to
incorporate variations of error-correction or control opti-
mization to improve the overall fidelity of the quantum
algorithms.

Fig. 6: Runtime complexity for quantum and classical spec-
tral clustering preformed on random directed graphs.

Figure 6 compares the performance of our approach com-
pared to classical spectral clustering using random graphs.
In case of classical quantum clustering, the number of
required operations significantly increases with the size of
the graph. As expected, our approach leads to linear increase
in the number of operations, since the number of qubits
will remain constant for a range of n and consequently the
number of operations in QPE will remain the same.

VI. CONCLUSION

While graph clustering has been widely studied, classical
spectral algorithms suffer from a cubic growth in runtime.
We proposed a quantum spectral clustering algorithm for
discovering clusters in directed as well as mixed graphs. Ex-
perimental results using synthetic and simulated benchmarks
demonstrated that our approach is scalable and can obtain
beneficial clusters in linear time. In contrast, state-of-the-
art classical algorithms are not useful in practice since they
require cubic time complexity. Moreover, we have shown
that near-future quantum computers can be used to encode
machine learning problems based on spectral clustering.
This work can be used as a stepping stone to study other
graph-based methods in machine learning and optimization
problems that rely on spectral analysis.
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