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Abstract—State preparation is an essential component in
quantum information science. A recently developed steering
protocol utilizes a sequence of generalized measurements on a
detector to steer a quantum system towards a desired state.
However, it is designed as an open-loop technique that requires
accurate modeling of the overall quantum system and can
be prone to errors. To address this challenge, we propose
a closed-loop control technique that introduces feedback to
the steering protocol, providing robustness to noise and faster
state convergence. We introduce two strategies for feedback:
(1) a gradient-based active steering protocol that changes
the detector-system coupling conditioned on the detector’s
readout and (2) tuning the fixed detector-system coupling via
model-free reinforcement learning. We study the effectiveness
of these strategies under various noise models, including
both incoherent and decoherent noise, and discuss potential
applications in quantum technologies.

Index Terms—Quantum computing, quantum measurement,
quantum steering, state preparation, quantum control.

I. INTRODUCTION

The ability to initialize quantum systems to a desired
state, commonly referred to as state preparation, is a funda-
mental requirement for realizing quantum technologies. This
process is vital for a range of applications, such as quantum
computing where the correct application of gates to imple-
ment specific functionalities relies on the initial known state.
Similarly, quantum communication protocols require the
preparation of an initial entangled state, quantum memory
relies on state preparation to read and write quantum states,
and quantum sensors must be in a known state in order to
accurately measure external stimuli. A well-established and
successful approach to solve the task of state preparation
is via quantum optimal control. These methods rely on
the Schrödinger equation, its differentiability, and gradient-
based optimization methods, to improve the control fields
that manipulate the quantum system. One such technique
is Gradient Ascent Pulse Engineering (GRAPE) [1]–[3],
which evaluates and ascends along the gradients to reach a
desired state (or a quantum gate). However, many techniques
such as GRAPE are open-loop, also referred to as non-
feedback or passive, where the actions are independent of
the process output [4]. This makes them susceptible to
parameter uncertainties and noise processes that can arise in
devices, leading to inaccurate predictions of the underlying
quantum dynamics [5]–[7].

To address these challenges closed-loop control strategies,
also known as active, are employed by performing mea-
surements on the quantum system to incorporate feedback.
These strategies have led to important developments in
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Fig. 1: Overview of the steering protocol where a system
couples with a detector. Measurements of the detector in-
duce a backaction on the system. Readouts of the detector
may be simply ignored (passive steering) or processed by
a classical computer to make decisions about the coupling
U (active steering). The goal is to reach a desired target
state |ψ⊕⟩, with an arbitrary initial state ρ0. (a) Passive
steering is an open-loop protocol and utilizes a sequence of
generalized measurements on a detector to steer a quantum
system towards a desired state. (b) Active steering is a
closed-loop protocol and involves a detector coupled with
our system via a tunable unitary Ui (0 ≤ i < N ) conditioned
on the readouts of the detector. As the detector is measured,
it induces a backaction on the system taking the state from
ρi to ρi+1. After measurement, the detector is reset back to
a known state (i.e. |0⟩). The readout results are processed by
a classical computer, which selects the next unitary coupling
parameter Ui+1.

a variety of challenging tasks, including quantum error
correction [8], [9], state preparation [10]–[12], stabilization
[13], the Zeno effect [14], and removing entropy from a
system [15]. However, a downside of feedback-based active
strategies is that they are typically slower as each sequence
of measurements must be conducted in the weak regime,
meaning that a weak coupling of a detector with a system
is necessary. While a weak coupling between the system
and detector results in slower evolution, it is necessary
to prevent the system from collapsing, enabling repeated
measurements for obtaining feedback. The weak coupling is
associated with slow state convergence which can leave the
system exposed to its environment for longer periods, and
increases the likelihood of cascading errors. Furthermore, in
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contemporary quantum devices [16] it is crucial to optimize
the utilization of quantum resources which makes slow
evolution resulting from weak coupling undesirable.

A novel approach for state preparation based on quantum
steering protocol takes advantage of the backaction induced
by measuring an entangled bipartite state [17]. In the case
of passive steering, this protocol repeatedly applies a fixed
operation on a coupled detector-system while performing
measurements on the detector to steer the system towards
a desired target state as illustrated in Figure 1(a). The
system state is prepared through a series of measurements,
where the readouts of the measurements’ are ignored. The
measurement readouts can be considered for halting the
repetition when the desired outcome is achieved [18]. This
steering protocol offers a significant advantage: with a par-
ticular form of strong coupling between the detector-system
and a single measurement, a state may be prepared instantly.
If a strong coupling is unattainable, repeated coupling and
measurements still result in convergence to the desired state
[19], [20]. Recent experimental results on cloud-accessible
quantum computers demonstrate the effectiveness of this
steering protocol [21]. While promising, the outcomes also
highlight the limitations of an open-loop control steering
protocol, where noise can lead to uncertainties in state
preparation.

To overcome such limitations, closed-loop control can be
employed utilizing the feedback. Recent theoretical work
[18] introduces feedback control to allow for real-time
adjustments in the steering protocol – active steering. The
goal of work [18] was to accelerate the rate of convergence
to a desired state. While the proposed faster protocol opti-
mizes the usage of quantum resources, it does not explicitly
account for system uncertainties or noise processes. In this
paper, we seek to address this concern, and introduce feed-
back strategies that yield stability even in the presence of
noise. Specifically, we propose the following two strategies:

1) A gradient-based active steering approach where the
final state fidelity is optimized for all quantum trajec-
tories, as shown in Figure 1(b).

2) A model-free reinforcement learning (RL) approach
that aims to improve passive steering (Figure 1(a)).
This is useful in the case when labeled data is scarce
or expensive to obtain.

We demonstrate the effectiveness of each method on simple,
yet realistic, noise models. This paper is structured as fol-
lows. First, we review the background and related works on
quantum feedback strategies, as well as recent developments
in measurement-induced steering of quantum systems. Next,
we briefly outline the relevant background information and
terminology used throughout the paper. We then present our
methodology for gradient-based optimization of the active
steering protocol followed by RL-based quantum steering.
Finally, we present experimental results of our approach and
summarizes our findings.

II. RELATED WORK

In a closed system without external disturbances or noises,
one can always prepare a target state by applying appropriate
unitary operations to the system. However, in open quantum
systems, it is difficult to maintain coherence because of
unavoidable coupling with the environment. Therefore, the
main challenge in quantum state preparation is obtaining
and protecting a target state in the presence of decoherence
caused by environmental noise. In this section, we review
some recent works on quantum control and outline the
general measurement-induced steering protocol.

A. Quantum State Engineering

Quantum feedback can be broadly categorized into two
main types: measurement-based feedback and coherent feed-
back, each presenting distinct advantages and challenges
depending on the specific application, as well as the desired
level of control and error tolerance. Measurement-based
feedback requires collapsing the quantum state through
measurement, followed by classical information processing
[22]. However, this method can introduce noise and errors
that negatively impact feedback control and the overall per-
formance of the quantum technology. Furthermore, the loss
of quantum coherence due to state collapse may constrain
the precision and control that can be achieved. In contrast,
coherent feedback [23] preserves the quantum nature of the
system and its feedback loop through continuous interac-
tions between the system and a quantum controller, such as
a detector. While this approach can provide enhanced control
and reduced noise, it also poses challenges in maintaining
coherence and preventing decoherence in the involved quan-
tum systems, making implementation more complex. In this
paper, we focus on steering, which, in essence, combines
elements of both methods, wherein measurements on a de-
tector supply feedback while simultaneous interaction with
the system and detector drives its evolution. The remainder
of this section examines related studies, and comments on
the differences and similarities with steering.

1) Gradient Ascent Pulse Engineering with Feedback:
Drawing inspiration from model-free reinforcement learn-
ing, feedback-GRAPE was developed to incorporate the re-
sponse to strong stochastic measurements while performing
direct gradient ascent optimization of quantum dynamics
[24]. In addition to the conventional optimization of control
parameters for the dynamics, feedback-GRAPE accounts for
the probabilistic state collapse resulting from measurements,
which in turn provide feedback to the system. This innova-
tive approach combines elements of both optimization and
feedback control, enabling more robust and efficient control
of quantum systems. Notably, our work also optimizes
control parameters for quantum dynamics, akin to feedback-
GRAPE. However, we consider strong measurements on a
coupled detector rather than direct measurements on the
system, and instead exploit the measurement backaction
to evolve the system state. Furthermore, unlike traditional
GRAPE, which optimizes pulses for continuous dynamics,
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we focus on optimizing specific discrete gates (or quantum
circuits) (see Section III-A), providing a general perspective
that does not require detailed knowledge of the quantum
device. Nonetheless, when the control Hamiltonians for the
system of interest are universal, we may take pulses into
account by using the chain rule.

2) State Engineering via Dissipation: Quantum-state en-
gineering driven by dissipation has emerged as a promising
paradigm for manipulating and controlling quantum systems
by harnessing the dissipative dynamics that typically arise
from interactions between the system and its environment
[25]–[27]. While dissipation has traditionally been consid-
ered detrimental due to its potential to cause decoherence
and loss of information, researchers have started recognizing
its potential as a valuable resource for generating specific
quantum states or performing quantum operations. Seminal
works in this field have led to the development of various
techniques, such as engineered reservoirs and tailored con-
trol sequences, to guide quantum systems towards desired
target states or operations. In these scenarios, the dissipative
environment is assumed to be Markovian and is modeled
using Lindbladian dynamics. Similarly, steering incorporates
a detector that serves as an environment, and as the de-
tector state is freshly prepared, it also displays Markovian
behavior. A notable benefit of steering is that, in contrast to
the dissipation case where the environment simply becomes
entangled with the system, the measurement of a detector
enables feedback control possibilities, presenting new av-
enues for managing quantum systems. Moreover, the jump
operators in the Lindblad equation for steering are designed
based on the selected detector-system coupling, unlike in
the dissipative case where the environment itself provides
its own jump operators.

3) Quantum Error Correction: Other state engineering
and feedback strategies have also been proposed, including
feedback based on quantum error correction codes [28].
These strategies have shown promise for achieving fault-
tolerant quantum computing and stabilizing quantum states
in the presence of noise. However, the implementation
of quantum error correction codes is typically resource-
intensive, requiring a large number of physical qubits and
significant overhead for error detection and correction. Fur-
thermore, feedback based on quantum error correction codes
can be sensitive to the choice of code and the specific error
model, and the performance of the code may degrade as the
error rate increases.

B. Measurement-induced Steering

Quantum steering, as first coined by Schrödinger, refers
to the peculiar property of quantum mechanics whereby
an entangled quantum state may be steered from one state
to another due to an experimenter’s act of measurement
[29]. While the phenomena of quantum entanglement has
appeared in a number of application in the field of quantum
information, it has recently been utilized in developing
a novel protocol for state preparation [17]. The protocol

assumes that our system of interest, described by the density
matrix ρs, is allowed to couple with a detector with the
density matrix ρd. Secondly, the protocol assumes that the
detector can be quickly reset to a predefined pure state, and
that it is first initialized to this state. We label this state
to be |0⟩. With these assumptions, the protocol prepares an
arbitrary target state |ψ⊕⟩ via a repetition of the following
steps:

1) At the n-th step, couple the detector and system
yielding a composite state described by the density
matrix ρn+1

d−s = U(ρd ⊗ ρns )U
†.

2) a) blind measurement of the detector resulting in a
system state

ρn+1
s = Trd

[
ρn+1
d−s

]
= Trd

[
Uρd ⊗ ρnsU

†] .
(1)

b) non-blind: projective measurement (Πr) of the
detector qubit resulting in a readout r, where the
system state now depends on r

ρn+1
s = Trd

[
Πrρ

n+1
d−sΠ

†
r

tr(ρn+1
d−sΠr)

]
. (2)

3) a) passive protocol: continue to next step.
b) active protocol: make a decision for the choice

of coupling U , dependent on the measurement
outcome, that appears in next iteration (or decide
to terminate).

4) Reinitialize the detector to the simple pure state ρd =
|0⟩, and return to step 1.

In the paper, we discuss strategies 1 → 2(a) → 3(a)
and 1 → 2(b) → 3(b) which we simply refer to as
passive steering and active steering respectively. With a
sufficient number of iterations, the backaction induced by
our detector steers our system state to the desired target
state |ψ⊕⟩. The initial state may be arbitrary pure or mixed.
However, the success of the protocol crucially depends
on the coupling operators U , which controls the kind of
backaction experienced by the system. In the passive case,
the operator U is chosen [17] such that the fidelity of the
system improves with each iteration:

⟨ψ⊕| ρns |ψ⊕⟩ < ⟨ψ⊕| ρn+1
s |ψ⊕⟩ . (3)

Because the operator U remains fixed, this is the simplest
case of the protocol. Furthermore, in the blind variation,
readouts of measurement are ignored and hence does not
require any additional processing. However, a fixed pre-
determined operator U may increase problems with noise.
In Section IV-B, we present a model-free reinforcement
framework that learns an U which will satisfy Equation 3
in the presence of noise.

However, in the active scenario, the operators Ui are de-
termined dynamically and do not need to satisfy Equation 3.
The only requirement is that at the end of protocol we arrive
at our target state:

⟨ψ⊕| ρns |ψ⊕⟩ = 1. (4)
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The active protocol allows us to gain feedback and tune
Ui for the next iteration. This provides an interesting op-
portunity to modify the behavior of the system without
directly measuring it. However, a strategy to choosing Ui is
a difficult [18] and open problem. In Section IV, we outline
our gradient-based method that optimizes the choice of Ui.
For further details on the variations of the protocol, we refer
to [18], [21].

III. BACKGROUND

In this section, we briefly introduce the terminology and
concepts used throughout the paper. We consider unitary
parametrization, noise models of quantum devices, and
ingredients for reinforcement learning.

A. Unitary Parametrization

As briefly mentioned in Section II-A1, we consider a
general quantum system, and therefore assume the system
is capable of preparing an arbitrary quantum evolution (e.g.
an arbitrary quantum gate). Any valid quantum gate on an
N dimensional system, excluding an irrelevant phase, lives
in the Lie group SU(N). Matrices in SU(N) have size
N × N , are unitary, and have a determinant equal to one.
From a group theoretical perspective, actions within the
SU(N) group can be represented by N2 − 1 generators
that are represented as N × N Hermitian and traceless
matrices, which generate infinitesimal rotations. The finite
rotations are generated with generalized Euler angles [30].
A convenient choice for these matrices are the generalized
Gell-mann matrices λi. Hence, a special unitary matrix U
can be specified by Euler angle coordinates θ⃗ in the Gell-
mann basis λ⃗

U = eiθ⃗·λ⃗. (5)
The generators generally do not commute, so ordered sum-
mation is assumed in Equation 5. An important property
is that these Euler angles are strictly real, which simplifies
differentiation with respect to the angles and for presenting
a reinforcement learning strategy.

B. Weyl Chamber

Any two qubit gate U ∈ SU(4) can be expressed
according to the Cartan decomposition [31], [32]

U = k1 exp

[
i

2

(
c1σ

d
xσ

s
x + c2σ

d
yσ

s
y + c3σ

d
zσ

s
z

)]
k2 (6)

where σx, σy, σz are Pauli matrices for detector and system,
and k1,2 ∈ SU(2)⊗SU(2) are single-qubit local operations.
By taking into account symmetries, the coefficients can be
limited to c1 ∈ [0, π] and c2, c3 ∈ [0, π/2]. They may
be interpreted as coordinates in a three-dimensional space,
where all possible two-qubit gates are points in a quarter
pyramid known as the Weyl-chamber. These coefficients
express the non-local “entangling” part of the gate U . The
chamber is depicted in Figure 8.

An additional characterization of two-qubit gates (or any
bipartite system) is via entanglement power [33]. Entangle-
ment power considers how much entanglement is produced

by a gate U on average, acting on a set of unentangled
states. In the two-qubit case, the entanglement power can
be expressed in terms of the coordinates c1, c2 and c3 [34],

ep(U) =
1

18
[3− cos 2c1 cos 2c2 + cos 2c2 cos 2c3

+ cos 2c3 cos 2c1]. (7)

The values are bound to 0 ≤ ep ≤ 2/9. Perfect entanglers,
ones that produce a maximally entangled state from some
product state, are in 1/6 ≤ ep ≤ 2/9.

C. Noise Models
In this paper, we consider two general noise models [7].
1) Decoherent noise: Decoherent noise is a type of noise

that arises in quantum systems due to interactions with
their environment, causing the system to lose its coherence
and become entangled with the environment. This leads to
errors in quantum operations and measurements, which can
significantly affect the accuracy and reliability of quantum
computations. We will consider depolarizing noise, which
is a general type decoherent noise.

Depolarizing noise is a process that randomly changes the
state of a qubit with a certain probability, causing it to lose
its coherence over time. This type of noise is characterized
by the depolarizing parameter p, which represents the prob-
ability that a qubit will experience a random Pauli rotation
around one of its axes. In other words, depolarizing noise
can be expressed as either maintaining its current state or
becoming mixed. If the state of a qubit is given by ρ then
depolarizing noise will map the state to

E(ρ) = (1− p)ρ+
p

N
I (8)

where I/N is mixed state of the detector. In this paper, we
use depolarizing noise to model faulty detector initialization.

2) Incoherent errors: Incoherent noise is another type of
noise that can affect quantum systems. Unlike decoherent
noise, which is due to the coupling of the system with
its environment, incoherent noise arises from fluctuations
within the quantum system itself. Examples of incoherent
noise include random variations in the amplitude or phase
of the qubits or gates, as well as errors in the initialization
or readout of qubits. We use incoherent noise to model
errors in the steering operator U . Specifically, to model
incoherent noise, we pick a set of R random unitary matrices
using the Gaussian Unitary Ensemble (GUE) [35], [36].
This is equivalent to generating through randomly chosen
generalized Euler angles from the Haar measure [30]

{Uj}Rj=1 = {eiθ⃗j ·λ⃗}Rj=1.

We associate a probability to each unitary matrix so that

{pj}Rj=1 s.t.

R∑
j=1

pj = 1.

At each instance, a noisy unitary matrix Unoisy is generated

Unoisy = UUrand, Urand ∈ {Uj}Rj=1 (9)
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Fig. 2: An overview of reinforcement learning.

with probability pr. Additionally, we add a parameter ϵ that
tunes the strength of Urand. In this paper, we use incoherent
errors to model faulty steering operators Ui.

D. Machine Learning Algorithms

Machine learning (ML) algorithms have received consid-
erable attention for various domains in recent years due to
their scalability in handling tasks [37]. Broadly speaking,
ML algorithms can be categorized into two major types,
supervised and unsupervised learning. Supervised learning
is a type of ML where the algorithm extract features from
ground-truth labeled data, and is often preferred when the
goal is to learn a mapping function from input to output data.
In cases where we have sufficient amount of data available,
supervised learning algorithms can often achieve high levels
of accuracy and performance. However, supervised learning
is not applicable in situations where labeled data is scarce
or expensive to obtain. In these cases, unsupervised learning
is more suitable.

Unsupervised learning is a type of machine learning
where the algorithm learns patterns and relationships from
unlabeled data, without the need for explicit supervision or
guidance from a human. One of the typical unsupervised
learning algorithm is reinforcement learning (RL), which
trains an agent to continuously learn decision-making be-
haviors by interacting with an environment and receiving
feedback rewards, as outlined in Section III-E. This self-
learning nature enables RL to perform well in scenarios
where it is difficult or impractical to provide sufficient
amount of labeled training data. Another advantage of RL
is interpretability and explainability. Because the algorithm
is trained in an iterative “feedback and update” manner, it is
often easier to understand why the RL model is making its
predictions and how the model gradually keeps improving
itself. However, RL requires continuously adapting and
improving itself over time. In this way, RL is relatively less
stable compared to supervised learning algorithms, and is
often hard to train for applications where the environment
is noisy or highly unpredictable.

E. Unsupervised Reinforcement Learning

A key challenge in feedback-based passive steering boils
down to finding a suitable unitary matrix U as the operator.
To address this challenge, Reinforcement Learning (RL) is
applied to our framework. RL has emerged as a promising

approach to excavate optimal solution in a large problem
space, as demonstrated by its successful application in
various domains [38]–[40]. RL is more similar to human
learning, where acquisition process involves exploration,
trial and error, and feedback from the environment, which
gradually teaches human the policies of interacting with the
world. Similarly, RL algorithms learn to discover optimal
strategies by constantly adjusting the ML model’s behavior
based on feedback from the environment, through a series
of attempts and iterations. An overview of RL framework
is shown in Figure 2. It consists of five core components:
Agent, Environment, Action, State and Reward.

The agent is the entity responsible for making decisions
and taking actions in the environment. In the context of
optimization problems, an agent can be viewed as a set of
test initials to be optimized. The environment is the system
that the agent interacts with. For example, the environment
typically refers to the objective function that needs to be
optimized. An action is a particular decision or choice made
by the agent that affects the environment. For example, an
action could correspond to mutating a particular set of input
parameters to evaluate the objective function. A state is a
description of the environment that is perceived by the agent.
For example, a state could include information about the
current status of the entire system, as well as any other
relevant variables or parameters. The reward is a feedback
signal from the environment that reflects the effect of the
agent’s latest action. For example, the reward is typically
defined as the improvement in the objective function after
applying the current set of input parameters. The goal of
the agent is to maximize the expected reward over time, by
learning to select actions that lead to better performance.

IV. FEEDBACK-BASED STEERING PROTOCOL

In this section we outline the two strategies for intro-
ducing feedback into the steering protocol, with the goal
of noise resilience. The first strategy is to consider active
steering, and allow changes in the steering operator based
on the previous history of readouts from the detector. We
formulate this as an optimization problem, where a classical
computer must derive the optimal steering operators at each
step: gradient-based active steering. The second strategy
seeks to improve the previously studied passive steering
[17], [21] where the detector readouts are ignored and the
steering operators remain fixed. We add feedback by con-
sidering the final fidelity of the system state, and modify the
steering operator via a reinforcement learning: reinforcement
learning passive steering.

A. Gradient-based Active Steering

As introduced in Section II-B, the active steering protocol
consists of a detector-system that is coupled via a parame-
terized unitary evolution U i

θ with parameters θ (Equation 5)
and at a step i. Measurements are conducted on the detector,
which produces readout outcomes ri and resulting in a
backaction on the system. The act of measurement may be
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(a) Visualization of the simplest case of active steering, where after
the first measurement an adjustment is made so that the desired
state will always be reached after the second measurement. The
illustration shows the first Bloch sphere in a random initial state.
A measurement is conducted on the detector (not shown) with two
possible outcomes. The result of this measurement is used to devise
a new coupling and measurement operation which always leads to
the same final state.

(b) Each node represents an application of a coupling unitary
followed by a measurement on the detector (not shown). The edges
represent the readout result of measurement (0/1) along with the
associated probability. The color of an edge represents the fidelity
of the system with respect to a desired target state. A histogram is
shown with a cumulative probability distribution of all trajectories.
In this example, with 3 measurements the system goes from an
arbitrary initial state to our desired target state.

Fig. 3: The evolution of a quantum system subject to the
gradient-based active feedback strategy.

defined in terms of a projection operator Πr, and will result
in a conditional system state

ρi+1
s =

{
Trd[Π0ρd−sΠ0/p0], p0 = Tr[ρd−sΠ0]

Trd[Π1ρd−sΠ1/p1], p1 = Tr[ρd−sΠ1]
(10)

where detector readouts are a 0 or a 1 with probability p0
and p1, respectively.

Our goal is to select Ui, and utilize them as a feedback
mechanism such that given path will steer to a desired
state. Specifically, in the context of quantum control, the
control parameters are the unitary coupling operators that
are applied at different steps, and depend on all previous
readout outcomes which we utilize to provide feedback,

U i
θ(rn, rn−1, . . . , r1). (11)

For the ease of illustration, we simplify the notation to
denote U j

θ (r) to refer to the operator being dependent on
all readout outcomes up to rj . These feedback control
are differentiable, depending on parameters θ, which may

be optimized via gradient-based optimization techniques.
Although the first unitary U1 does not depend on any pre-
vious readouts, it can still be optimized. Note that although
the unitary operators are differentiable with respect to the
parameters θ, their dependence on measurement readouts
requires extra care. The key insight is to note that the
measurements are not conducted on the system, but rather
on the detector. Furthermore, the probabilities of different
readout outcomes depend on all the previously applied
unitary operators which is carried the evolution of detector
state. To account for this dependence, the evaluations of
gradients with respect to θ is done by summing all readout
paths. Therefore, when a gradient is computed with respect
to θ, it also accounts for the dependency on the probability
that arises from the application of the first unitary and
measurement of the detector, U0

θ (ρ
0
S ⊗ |0⟩ ⟨0|)U0†

θ .
Our goal is to minimize the overall cumulative error

J , which is referred to as the cost. In our case, the cost
is defined in terms of the final fidelity of our system
with respect target state. Hence, for a given sequence of
measurement readouts, we define

J (r) = 1− ⟨ψ⊕| ρns (r) |ψ⊕⟩ (12)

where ρnS is the final system state after applying n-
repetitions of the protocol and which is dependent on all
prior readouts. As described previously, to account for all
readout paths, the cost is defined as a sum

⟨J ⟩r =
∑
r

Pn(r)J (ρns ) (13)

where Pn(r) is the cumulative probability of the path
defined through previous readouts r and for the iteration n.
In other words, the cost is a sum of all final fidelities (step n)
for all possibles sequences of readout outcomes. As we take
the gradient with respect to the parameters θ, we note that
the derivative does not act on the cumulative probabilities
Pn(r). This is due to the protocol being independent to the
initial states ρ0s. Therefore, the gradient simply defined as

∂ ⟨J (r)⟩r
∂θ

=

〈
∂J (r)

∂θ

〉
r

. (14)

In general, the evaluation of the gradient with respect to
parameters θ can be done in two ways: using the analytical
expression to obtain expressions for the gradients that may
be evaluated numerically, or using automatic differentiation.
We opt to implement gradient evaluation via automatic
differentiation frameworks. This approach is particularly
useful when the time evolution described by U can consist
of many building blocks, such as a parameterized quantum
circuit.

1) Example: Single-Qubit State Preparation: In the sim-
plest case, we assume a qubit is coupled with a detector. An
example quantum trajectory of the qubit is shown Figure 3a
and Figure 3b for preparing a superposition state

|ψ⊕⟩ =
1√
2
(|0⟩+ |1⟩) . (15)
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(a) The quantum trajectories produced
via measurements of the detector.
Each node shows the fidelity of the
two-qubit state for the desired

∣∣Φ+
〉
.

(b) The landscape along a
two-dimensional slice of
the parameter space (three
coupling operators Ui) for
obtaining the Bell state.

| + | | + |

| +

|

| +

|

n = 0
s

| + | | + |

| +

|

| +

|

n = 1
s

| + | | + |

| +

|

| +

|

n = 1
s

| + | | + |

| +

|

| +

|

n = 2
s

(c) The density matrix of the two-qubit system, ρs in the Bell basis
as a colormap (absolute value of the matrix elements.) ρn=0

s is a
randomly-chosen initial state and ρn=2

s is the final state for all
four possible outcomes in (a). The two intermediate states in (a)
correspond to ρn=1

s , sharing low overlap with the desired Bell state.

Fig. 4: Preparing a two-qubit Bell state, |ψ⊕⟩ = |Φ+⟩ = (|00⟩+ |11⟩)/
√
2, via feedback-based steering. The detector (not

shown) is a 2-level system that couples with two qubits. In two steps (N = 2), resulting in 3 steering operators (dimension
8× 8), the protocol was able to prepare the target state.

While it is possible to prepare the state in one iteration
(N = 1), we will later show that this is susceptible to
noise as this is equivalent to passive steering (no feedback is
possible). Figure 3a shows the next simplest case (N = 2)
by visualizing the qubit’s state on the Bloch sphere. Fig-
ure 3b now shows the convergence of state fidelity using
three measurements (N = 3).

2) Example: Two-qubit State Preparation: To illustrate
the effectiveness of the protocol, we consider a system
consisting of two qubits. While the number of detectors
required in the passive protocol is three [17], we are able to
use a single detector to prepare an arbitrary two-qubit state.
The noiseless results for the two-qubit steering are shown
in Figure 4. The protocol was able to prepare a specific
entangled state starting from a random initial state. The
density matrix elements given with respect to the Bell basis:
|Φ+⟩ = (|00⟩+|11⟩)/

√
2, |Φ−⟩ = (|00⟩+|11⟩)/

√
2, |Ψ+⟩ =

(|01⟩+|10⟩)/
√
2, |Φ−⟩ = (|01⟩−|10⟩)/

√
2. At the final iter-

ation, the matrix elements spanned by {|Φ−⟩ , |Ψ+⟩ , |Ψ−⟩}
have zero value, while the element spanned by our desired
target state |ψ⊕⟩ = |Φ+⟩ is unity.

B. Reinforcement Learning Passive Steering

Based on the challenges and workflow discussed in
Section III-E, we propose a learning paradigm shown in
Figure 5 to map the objects in quantum steering onto
the five key components of reinforcement learning: agent,
environment, action, and reward. The agent, which interacts
with the environment, is chosen as the Euler angles used
to compose the operator unitary matrix U . The environment
is represented as the entire quantum system that receives
the composed operator U to perform quantum steering.
The state values record all the basic information of the
interaction between the current operator U and the quantum
system to evaluate the reward computation.

The action space is defined as all possible mutations
to the Euler angles, which produce an updated U that is
subsequently applied to the steering simulation. The reward-
based optimization step enables the reinforcement learning

Fig. 5: The reinforcement learning based U generator.

model to learn a sophisticated strategy to update initial
operators. However, the vast action space of Euler angles,
which is encoded as a vector of real number, makes it
impractical for encoding and simulation. To address this
challenge, we assign a Gaussian distribution to each of the
entrees. This produces the offset to the current entrees, and
the action is chosen randomly at each step based on the
parameterized distribution. This guarantees the coverage of
all possible actions. Moreover, the expectation of the current
can be precisely computed, making it possible to apply
policy gradient to optimize the parameters (µi, σi) during
the training phase.

The reward is the most important feedback information
from the environment that describes the effect of the latest
action. It often refers to the benefit of performing the current
operation. In our framework, we apply policy gradient, a
stochastic approach, to compute and optimize the reward
evaluation. To achieve this, the policy is represented by a
function, denoted as πθ(a|s), where s denotes the state and
a denotes the action. The parameter θ represents the policy
function. πθ(a|s) is the probability of selecting action a
given the state s. The objective function, which is dependent
on the policy, determines the value of the reward. Gradient
descent is applied to optimize θ and achieve the best reward.
The complete reward function is defined as:

J(θ) =
∑
s∈S

dπ(s)
∑
a∈A

πθ(a|s)Qπ(s, a)

S and A denote the sets of all states and actions, re-
spectively. dπ(s) represents the stationary distribution of
Markov chain for the policy function πθ, which is the
on-policy state distribution under π. This implies that the
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reinforcement learning model continuously travels along
the Markov chain’s states until it eventually reaches a
steady state probability distribution. Formally, this can be
expressed as dπ(s) = limt→∞P (st = s|s0, πθ). Qπ(s, a)
represents the one-step reward. In this work, temporary
Euler angles are applied to manipulate quantum steering for
several iterations, and the improvement in terms of fidelity
is recorded as the Q value. However, the sets S and A
are uncountable, and it is also impossible to run infinite
iterations to obtain an accurate value for dπ . Therefore, we
approximate dπ(s) by applying the current policy for ten
iterations, i.e., dπ(s) = P (s10 = s|s0, πθ). According to
the policy gradient theorem [41], the gradient computation
can be expressed as:

∇J(θ) = ∇
∑
s∈S

dπ(s)
∑
a∈A

πθ(a|s)Qπ(s, a) (16)

∝
∑
s∈S

dπ(s)
∑
a∈A

∇πθ(a|s)Qπ(s, a) (17)

Since we are using Gaussian distributions to ma-
nipulate the Euler angles, θ in our case is G =
N1(µ1, σ1),N2(µ2, σ2), ...,N15(µ15, σ15). In this context,
the action involves adding an offset ϵ to the corresponding
Euler angle entry. This can be expressed as:

∇πθ(a|s) = ∇πG(s+ {ϵi}|s), ϵi ∼ Ni(µi, σi)

In actual computation, we apply logarithmic loss for the ease
of computation, and by putting all these together, the policy
gradient computation can be accommodated as following
formula in our case:

∇J(θ) =Eπ[Q
π(s, a)∇G ln(πG(s+ {ϵi}|s))] (18)

ϵi ∼ Ni(µi, σi), i = 1, 2, ..., 15 (19)

and the overall training process of proposed RL model is
presented in Algorithm 1.

Algorithm 1: RL Training Process
Input : System Qubit (S), ancilla detector (D)

Model Parameter (G),number of epochs (k)
Output: Optimal Model Parameter G∗

1 Initialize S,D,G, k, learning rate α, decay ratio γ
2 Initialize random Euler angles E
3 i = j = 0
4 repeat
5 Initialize Reward: R = 0
6 E = act(E , G)
7 U = createUnitary(E)
8 repeat
9 fidelity = Simulate(S, D, E)

10 R′ = R′ + γ · (1− fidelity)
11 until j ≥ 10;
12 R = R+R′

13 Update parameter : G = G + α∇θJ(R)
14 until i ≥ k;
15 Return G

In summary, we described two complementary strategies
for active steering in this section: gradient-based and re-
inforcement learning. The choice of the strategy depends
on the specific configuration and the availability of labeled
data. If labeled data (Euler angles-fidelity mappings) is
available, then gradient-based method is beneficial due to
the high stability and resistance towards noise. However, if
labeled data is scarce or non-existent, or if interpretability is
important, then reinforcement learning is more appropriate.

V. EXPERIMENTS

In this section, we evaluate our gradient-based active
steering (GB + Active) strategy and our reinforcement
learning (RL + Passive) strategy for preparing quantum
states under different noise assumptions.

A. Experimental Setup

The experimental setup involves the use of Qiskit,
an open-source quantum computing software development
framework, along with a custom Julia library for perform-
ing gradient-based optimization of feedback-based quantum
steering. We implement noise models in our custom library
as well as in Qiskit for reinforcement learning. Our cus-
tom library is open-source [42], and utilizes Tullio’s [43]
flexible Einstein notation to perform operations on tensors
while simultaneously providing gradients using automatic
differentiation. The objective is to optimize the parameters
of steering protocol using quasi-Newton methods, namely
limited-memory Broyden–Fletcher–Goldfarb–Shanno algo-
rithm [44], to maximize the fidelity of obtaining a specific
target state while considering the effects of noise. Our free
parameter is the number of iterations N of the protocol.
Therefore, for each N , we find an optimal solution for all
steering operators.

The reinforcement learning model in our approach was
conducted on a host machine with Intel i7 3.70GHz CPU, 32
GB RAM and RTX 3090 256-bit GPU. We choose Python
code using PyTorch with cudatoolkit (10.0) to implement
the machine learning framework. The total training process
consisted of 500 epochs.

We investigate the performance of a feedback-based steer-
ing protocol for preparing an arbitrary target state of a qubit
coupled to a detector. The protocol involves a closed-loop
control technique that utilizes feedback to steer the system
towards the target state. Specifically, we consider a detector
that is coupled to the system – a qubit or two-qubits – and
employ our two strategies for closed-loop control technique:
gradient-based active steering that changes the detector-
system coupling after each measurement, and tuning the
fixed detector-system coupling via model-free reinforcement
learning passive steering. We demonstrate the results of the
approaches on decoherent and incoherent noise models.

B. Decoherent Noise on the Detector

In this model, we assume that the detector can not
be initialized to a perfect pure state |0⟩, as discussed in
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Fig. 6: The fidelity landscape with respect to a two-dimensional slice of the parameter space. Gradient-based optimization
must find the global maxima of the fidelity landscape in order to determine the optimal values for the parameters. The
fidelity landscape provides insights into the sensitivity of the system to changes in the parameters. Namely, the feedback-
based steering protocol is locally stable, containing a range of parameters that yield high fidelity. While locally stable,
the addition of noise introduces islands of local maximas.

Fig. 7: The average fidelity of the gradient-based active
steering versus reinforcement learning passive steering in the
presence of faulty detector initialization. The depolarizing
error for the detector initialization is fixed to p = 0.2. The
reinforcement learning protocol incorrectly converges to a
fidelity of 89% while the gradient-based protocol converges
to 96% in 10 iterations. Each color line indicates an experi-
ment performed with a specific number of iterations N . The
error bars are taken from 100 samples of each experiment.

Section II-B. Instead, the detector is assumed to undergo
decoherence, and will be in a mixed state. The extent of
noise is parameterized by p, as defined in Equation 8.

We found that the gradient-based active steering was able
to overcome a faulty detector and achieve high fidelity
over longer iterations. This was achieved by optimizing the
steering operator based on feedback information obtained
from noisy measurements. As shown in Figure 7, as the
number of iterations increased, the protocol was able to
refine the steering operator further, resulting in 96% fidelity
in 10 iterations of the protocol. In comparison, the reinforce-
ment learning passive steering plateaued at 89% fidelity. The
optimizer attempts to minimize entropy from the composite
system as a result of a mixed detector state via gates that
have high entanglement power, as shown in Figure 8a.

In contrast, the reinforcement learning strategy was not
able to extract the entropy and obtain lower fidelity. This
is because the steering operator remained fixed (passive)
with each iteration, and the reinforcement learning algorithm
has no mechanism to modify it to account for the noise. In

other words, because the system state is an average of all
readout outcomes, the entropy remains fixed. Meanwhile,
the gradient-based active steering can optimize each operator
and produce an outcome that one quantum trajectory occurs
with high probability, whereas the unwanted entropy is
spread across the remaining low-probability trajectories.
Our results demonstrate the effectiveness of feedback-based
strategies in quantum systems, as they can adapt and opti-
mize in real-time to overcome various sources of noise and
errors. This has important implications for the development
of quantum technologies, as it provides a way to mitigate
the effects of noise and errors in real-time, improving the
reliability and robustness of quantum devices.

C. Incoherent Noise

In addition to investigating the protocol’s effectiveness
in overcoming decoherent noise on the detector, we also
tested its ability to handle incoherent noise. Specifically,
we assumed the steering operator was perturbed with a
randomly noisy unitary selected from a fixed set, as outlined
in Equation 9. We tested the protocol on different strengths
of noise. Figure 6 shows a two-dimensional slice of the
landscape corresponding to different noise strengths that
the gradient-based optimizer needs to traverse. From the
landscape we note two key properties: (1) the protocol is
resilient to small perturbations to the steering unitaries – in
other words, a quantum device has leeway in implementing
a unitary operator; (2) an increase in incoherent noise
strength, corresponds to a growth in the number of local
minima and maxima, which lowers the extent of perturbation
resilience. Figure 9 shows that the feedback-based steering
protocol is able to achieve high fidelity even in the presence
of incoherent noise. Even with an increase of noise, the
protocol was able to reach and maintain a high fidelity of
99%. In comparison, reinforcement learning passive steering
obtains significantly lower fidelity and with high variance.

The gradient-based active steering protocol’s effectiveness
in handling incoherent noise is due to its ability to adapt and
optimize the steering operator based on feedback informa-
tion obtained from the noisy measurements. By adjusting the
steering operator in real-time to account for the perturbations

1316



c1

0
/2 c2

0

/2

c 3

0

/2

A1

A2

A3

O
L M

N
P

Q

(a) Decoherence of detector (p = 0.25)

c1

0
/2 c2

0

/2

c 3

0

/2

A1

A2

A3

O
L M

N
P

Q

(b) Incoherent gate noise (ϵ = 0.25)
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(c) Incoherent gate noise (ϵ = 0.5)

Fig. 8: Weyl chambers representing the non-local parts of the optimized steering operators Ui under different noise
parameters. The number of iterations in the protocol is fixed to N = 5. The color of each gate represents its entanglement
power which is related to the coordinates in the Weyl chamber [45]. In the presence of decoherence, majority of the
gates require high amounts of entanglement power as the protocol attempts to dispel the entropy from composite detector-
system. The gates in the presence of incoherent noise require less entanglement power, as the entropy of the composite
detector-system remains fixed (but changes for the system). For higher noise levels, the variation in the gates, and the
entanglement power, increases.

Fig. 9: Resilience of feedback-based steering in the presence
of incoherent gate noise. Each steering operator is perturbed
by a unitary that is randomly selected from a discrete set
of unitary operators. The strength of the perturbation is
given in terms of ϵ. Each color line indicates an experiment
performed with a specific number of iterations N . The error
bars are taken from 100 samples of each experiment. With
a sufficient number of iterations, the protocol is able to
overcome the noise and approaches a state fidelity 99%.
At lower noise strengths, the protocol achieves higher state
fidelity in fewer iterations. Meanwhile, the reinforcement
learning passive steering approach is unable to reach a
suitable average fidelity and suffers from fidelity variation
that scales with the strength of noise.

introduced by the incoherent noise, the protocol was able
to mitigate its effects and maintain high final fidelity. In
particular, the protocol converges to the desired target state
with low variance. Figure 8b and Figure 8c shows the gates
in the Weyl chamber. At low noise levels, the majority of
gates are perfect entanglers. At higher noise levels, the gates
tend to spread across the Weyl chamber, necessitating a
variety of entanglement operations. Unlike in the decoherent
case, high entangling power gates are minimal. We note that
it may be difficult to achieve certain types of entangling
gates on noisy devices. But, a trade-off may be made by
penalizing unwanted gates in the loss function.

VI. CONCLUSION

In this work, we have introduced a framework for
feedback-based steering, featuring two primary strategies:
gradient-based optimization and reinforcement learning.
These methods optimize the detector-system coupling, such
that the system is steered toward desired state due to
the measurement backaction of the detector. Our findings
indicate that gradient-based active steering is an effective
approach for state preparation in quantum systems, even
in the presence of noisy measurements and incoherent
noise. This insight holds significant implications for the
advancement of quantum technologies, as it offers a robust
control mechanism for contemporary quantum architectures.

The active steering strategy necessitates substantial com-
putational resources for higher-dimensional systems. In con-
trast, reinforcement learning-based passive steering is capa-
ble of learning a specific objective with limited resources.
However, it achieves lower fidelity under the influence
of noise, underscoring the importance of incorporating an
active mechanism to modify the detector-system coupling.
We emphasize the need for future research to investigate
and integrate both algorithms, leveraging their respective
strengths as outlined in this paper. Our research lays a solid
groundwork for feedback-based steering and highlights its
potential in preparing quantum states amidst noise.
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betta, “Experimental Demonstration of Fault-Tolerant State Prepara-
tion with Superconducting Qubits,” Phys. Rev. Lett., vol. 119, no. 18,
p. 180501, Oct. 2017.

[11] A. Kandala, A. Mezzacapo, K. Temme, M. Takita, M. Brink, J. M.
Chow, and J. M. Gambetta, “Hardware-efficient variational quantum
eigensolver for small molecules and quantum magnets,” Nature, vol.
549, no. 7671, pp. 242–246, Sep. 2017.

[12] P. J. J. O’Malley, R. Babbush, I. D. Kivlichan, J. Romero, J. R.
McClean, R. Barends, J. Kelly, P. Roushan, A. Tranter, N. Ding,
B. Campbell, Y. Chen, Z. Chen, B. Chiaro, A. Dunsworth, A. G.
Fowler, E. Jeffrey, E. Lucero, A. Megrant, J. Y. Mutus, M. Neeley,
C. Neill, C. Quintana, D. Sank, A. Vainsencher, J. Wenner, T. C.
White, P. V. Coveney, P. J. Love, H. Neven, A. Aspuru-Guzik,
and J. M. Martinis, “Scalable Quantum Simulation of Molecular
Energies,” Phys. Rev. X, vol. 6, no. 3, p. 031007, Jul. 2016.

[13] B. P. Lanyon, C. Hempel, D. Nigg, M. Müller, R. Gerritsma,
F. Zähringer, P. Schindler, J. T. Barreiro, M. Rambach, G. Kirchmair,
M. Hennrich, P. Zoller, R. Blatt, and C. F. Roos, “Universal Digital
Quantum Simulation with Trapped Ions,” Science, vol. 334, no. 6052,
pp. 57–61, Oct. 2011.

[14] G. A. Paz-Silva, A. T. Rezakhani, J. M. Dominy, and D. A. Lidar,
“Zeno Effect for Quantum Computation and Control,” Phys. Rev.
Lett., vol. 108, no. 8, p. 080501, Feb. 2012.

[15] D. Basilewitsch, J. Fischer, D. M. Reich, D. Sugny, and C. P. Koch,
“Fundamental bounds on qubit reset,” Phys. Rev. Res., vol. 3, no. 1,
p. 013110, Feb. 2021.

[16] J. Preskill, “Quantum Computing in the NISQ era and beyond,”
Quantum, vol. 2, p. 79, Aug. 2018.

[17] S. Roy, J. T. Chalker, I. V. Gornyi, and Y. Gefen, “Measurement-
induced steering of quantum systems,” Phys. Rev. Research, vol. 2,
no. 3, p. 033347, Sep. 2020.

[18] Y. Herasymenko, I. Gornyi, and Y. Gefen, “Measurement-driven
navigation in many-body Hilbert space: Active-decision steering,”
Oct. 2022.

[19] P. Kumar, K. Snizhko, and Y. Gefen, “Engineering two-qubit mixed
states with weak measurements,” Phys. Rev. Res., vol. 2, no. 4, p.
042014, Oct. 2020.

[20] P. Kumar, K. Snizhko, Y. Gefen, and B. Rosenow, “Optimized
steering: Quantum state engineering and exceptional points,” Phys.
Rev. A, vol. 105, no. 1, p. L010203, Jan. 2022.

[21] D. Volya and P. Mishra, “State Preparation on Quantum Computers
via Quantum Steering,” arXiv:2302.13518, Mar. 2023.
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